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A new model to simulate passive scalar fields in large-eddy simulations of turbulence
is presented. The scalar field is described by clouds of tracer particles and the subgrid
contribution of the tracer displacement is modelled by a kinematic model which obeys
Kolmogorov’s inertial-range scaling, is incompressible and incorporates turbulent-like
flow structure of the turbulent small scales. This makes it possible to study the scalar
variance field with inertial-range effects explicitly resolved by the kinematic subgrid
field while the LES determines the value of the Lagrangian integral time scale T;.
In this way, the modelling approach does not rely on unknown Lagrangian input
parameters which determine the absolute value of the scalar variance.

The mean separation of particle pairs displays a well-defined Richardson scaling
in the inertial range, and we find that the Richardson constant G, ~ 0.07 which is
small compared to the value obtained from stochastic models with the same T;. The
probability density function of the separation of particle pairs is found to be highly
non-Gaussian in the inertial range of times and for long times becomes Gaussian.
We compute the scalar variance field for an instantaneous line source and find good
agreement with experimental data.

1. Introduction
1.1. Overview

Large-eddy simulation (LES) has become an established tool for the calculation of
turbulent flows in simple geometries and is being used in configurations of increasing
complexity and practical interest (for a recent overview see, for example, Métais &
Ferziger 1997). An important aspect of LES is the transport of passive scalar fields,
and in the context of simulations of the planetary boundary layer in particular, the
characteristics of scalar transport have been extensively investigated (Ciofalo 1994).
In fact, classical and current approaches to LES of scalar fields allow only for the
computation of the average concentration field. However, important properties such
as mixing rates or possible peak concentrations are related to the concentration
variance field, itself determined to a large extent by subgrid turbulent motions, and
in this paper we seek a subgrid model that allows us to predict the concentration
variance field.

In LES, the turbulent field is decomposed by filtering the equations of motion into
a turbulent large-scale field which is explicitly computed and a turbulent small-scale
field which is modelled. In the limit of very high Reynolds numbers, models of the
subgrid scales are usually based on the assumptions (i) that an inertial range of scales

1 Present address: ABB Alstom Technology Ltd., CH-5405 Baden-Daettwil.
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exists (where energy is transferred locally in wavenumber space from scale to scale
and dissipation is independent of viscosity) and (ii) that the filter acts in the inertial
range. Under these assumptions, the effect of the small scales on the mean field
may be expected to be mainly one of dissipation and independent of the particular
flow configuration. Thus, in analogy with molecular diffusion, one makes a gradient-
diffusion assumption and introduces an eddy viscosity v, that takes into account the
dissipation by the unresolved small scales. The eddy viscosity can then be determined
by a direct application of Kolmogorov’s universal inertial-range scaling theory.

The simulation of passive scalar fields in LES has mostly relied on an analogous
gradient-diffusion assumption for the scalar transport equation, leading to a turbulent
diffusivity x, which takes into account the turbulent scalar fluctuations at the subgrid
scales (Lesieur & Meétais 1996). An application of Obukhov—Corrsin’s inertial range
theory for turbulent scalars then leads to a universally constant turbulent Prandtl
number Pr, = v,/k, which allows the turbulent diffusivity to be directly computed
from the subgrid model of the velocity field.

In this paper, we argue that the turbulent diffusivity x, is not appropriate for
two reasons. First, even though the derivation of Pr, (see §1.2) leads to a constant
turbulent Prandtl number, different values for Pr, have been proposed in the literature
(Pr, = 0.1...1) so that Pr, turns out, in practice, to be a variable fit parameter to
match reference results (Ciofalo 1994). The second reason why the turbulent diffusivity
approach is not appropriate here is that we want to compute scalar variances, and
the scalar variance strongly depends on the small-scale turbulent flow structure which
a turbulent diffusivity x, does not take into account. We therefore seek a way to
incorporate the effects of subgrid flow structure on scalar dispersion, and the approach
adopted here is Lagrangian and is based on the relation between the Eulerian scalar
field and Lagrangian trajectories of marked fluid elements (also referred to as particles
in this paper). The only currently available Lagrangian model of turbulent dispersion
that is incompressible by construction, incorporates spatio-temporal flow structure
and obeys certain fundamental turbulence statistical scalings such as Kolmogorov’s
—% law is Kinematic Simulation (KS) (see Fung et al. 1992; Fung & Vassilicos 1998;
Malik & Vassilicos 1999). In this paper we use KS to model the spatio-temporal
structure of the velocity field that advects the scalar field (or fluid elements) below
the grid.

Lagrangian calculations of average concentrations require knowledge of one-
particle statistics, and Lagrangian calculations of scalar fluctuations and scalar vari-
ances require knowledge of two-particle statistics (Durbin 1980). Recently, one-particle
statistics have been used to describe the mean concentration field of plumes in LES
of the atmospheric boundary layer (e.g. Hadfield 1994). However, the fluid element
trajectories used in the subgrid scales of this LES were generated by Wiener pro-
cesses. Such one-particle stochastic Lagrangian models of the subgrid scales can only
be used to calculate the mean scalar field. But the point here is that it is often of
crucial importance to be able to describe the scalar fluctuation field, for example in
the prediction of air pollution or the determination of turbulent reaction rates. These
quantities are intimately related to the probability distribution function (p.d.f.) of
the two-particle separation vector (as discussed in §2) and Richardson’s constant G
(see §3). To date, no LES of scalar fields has been able to make predictions of the
scalar fluctuation field, p.d.f.s of two-particle separations or Richardson’s constant.
A small Richardson constant implies a large concentration variance, and the issue of
whether the separation p.d.f. is Gaussian or not dates back to Batchelor (1952) and
Richardson (1926). All these questions and issues are directly addressed in this paper.
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In the remainder of this Introduction, we review the concepts of LES and of eddy-
viscosity /eddy-diffusivity models in order to highlight the potential drawbacks of the
filtering operation and the replacement of the subgrid scales by a simple diffusive
process. We then stress the significance of flow structure in the turbulent small scales
and compare KS to stochastic models of turbulent dispersion.

1.2. Eddy-viscosity models in LES

We only state the definitions and equations that are most relevant to this study. For
more detailed information on LES the reader is referred to, for example, Lesieur &
Meétais (1996).

In LES the relevant flow variables (velocity, pressure, passive scalar) are decom-
posed into large- and small-scale variables, i.e.

u=u+u, 0=0+0, (1.1)

where the overbar denotes the filtered (or large-scale) part and the prime denotes
the unresolved or small-scale part of the flow field # and passive scalar field 6. The
general definition of the filter operation is given by

f(x) = / G(x — ¥)f(x)dx' = / G(k)f (k) exp(ikx) dk, (1.2)

where f(x) is the variable to be filtered, G is the filter function, and f(k) and G(k)
are their respective Fourier transforms. In this study we use the sharp Fourier cutoff
filter with cutoff wavenumber k. which is the most straightforward filter to define for
spectral LES.

The Navier—Stokes and passive scalar equations for incompressible flow are

O+ (u-Vyu=—Vp+vVu, (1.3)

0,0 +u-V0 = kV?0, (1.4)
with V-u = 0, and where v is the molecular viscosity and « is the molecular diffusivity.
Applying the filter operation to the equations of motion we obtain

du+ (@-Vya=—-Vp+vwWa+V-r, (1.5)

0,0 +1-V0 = kV*0 + Vg, (1.6)
where
;= Ul — ug, g = 0w — Ou.
The effect of the subgrid scales on the resolved ones appears in the subgrid stress

tensor T and the subgrid scalar flux ¢. The usual approach to modelling the subgrid
fluxes is to make gradient-diffusion assumptions, specifically

Tij + 04Tk /3 = vi(Ox, Ui + 0. U;), (1.7)

qi = K050, (1.8)

where the eddy viscosity v, and the eddy diffusivity x, depend on large-scale variables.
For example, the Smagorinsky model relates the eddy viscosity to the large-scale
strain tensor, and the spectral eddy viscosity employed in this paper depends on the
cutoff wavenumber k. and the shape of the energy spectrum at the cutoff.

Models of x, are derived by similar arguments, i.e. by relating the turbulent
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diffusivity to large-scale variables. Both models are then typically related via a
turbulent Prandtl number Pr,,
PV, == Vt/Kz, (1.9)

which is usually assumed to be constant. Its numerical value can in fact be derived by a
direct application of the inertial-range velocity and scalar scaling laws of Kolmogorov
and Obukhov—Corrsin. Let us now describe these scaling arguments.

We work in Fourier space and define the large-eddy filter by a sharp cutoff
wavenumber k.. The energy dissipation rate e and the scalar dissipation rate y are
given by

e =2y / k?E (k) dk, y = 2K / k2T (k) dk,
0 0
where E(k) is the energy spectrum of the turbulent velocity field and I" (k) is the scalar
variance spectrum. Truncating the integrals and replacing the molecular viscosity and
diffusivity by the turbulent viscosity and diffusivity to take into account the effect of
all turbulent small scales below the grid (i.e. k above k.) leads to

ke k.
€~ 2, / KE(K)dk, 7~ 2k, / k2T (k) dk.
0 0

We assume that the cutoff k. is within the inertial range of scales where
E(k) ~ Cxe**k™3,  T'(k) = Coce Pyk™",
where Cg is the Kolmogorov constant and Coc is the Obukhov—Corrsin constant,
and we find that
E(kc)

~ 212 A1
Kz~§CK Cocr| —-

ke

E(k.)
ke’

~ 23/2
Vv & §CK

It follows that

PV, = COC/CK- (110)
Leslie & Quarini (1979) were the first to suggest the energetic subgrid adjustment of
the eddy viscosity; a more elaborate approach to eliminating the high-wavenumber
part of the turbulence and incorporating its effect into an eddy viscosity was taken

by Chollet & Lesieur (1981) who used a two-point closure theory (Kraichnan 1976)
and obtained

E(k)\"?
vi(k,k.) = 0.267v*(k/k.) ( l((k‘)> (L.11)
where v*(k/k.) is a non-dimensional eddy viscosity equal to 1 for k < k. with a sharp
increase (‘cusp’) at k =~ k.. The shape of v* has to be derived by the closure theory
and an approximate fit is given by

vi(x) =1+ 3449 exp {—303] (1.12)
X
Chollet (1984) derived a similar model for the spectral eddy diffusivity
E(k N\ /2
Kk, k.) = 0.445%"(k/k.) ( lik")) . (1.13)

However, additional free parameters in his two-point closure theory allow for a variety
of different forms of x*(k/k.) and, as a consequence, Pr, can be derived to be either
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constant and equal to 0.6 even in the vicinity of k., or equal to the constant value
0.33 for k < k. with a sharp increase just before k. leading to a peak value of 0.6 at
the cusp.

In any case, the constant numerical value of Pr, is based on the assumption of
inertial-range scaling for both the velocity and scalar fields, and should be Pr, ~ 0.6
for consistency. However, whereas a well-defined Kolmogorov inertial-range scaling
E(k) = Cxe**k=>/3 has been observed in many high-Reynolds-number flows (Sreeni-
vasan 1995), no such unqualified evidence exists for the corresponding Obukhov—
Corrsin scalar inertial range I'(k) = Coce™'3yk=/3. For example, the issue of the
universality of the constant Cyc is still debated (see, for example, Sreenivasan 1996);
this discussion may be linked to the issue of the different values of Pr, used in LES of
different flows. Also, in the case of finite Reynolds numbers, the spectral exponents
p and g of the velocity power spectra E(k) ~ k™" and the scalar variance spectra
I'(k) ~ k™4 frequently show different behaviour with p,q < % and p > ¢ both in
experiments (Mydlarski & Warhaft 1998) and in direct numerical simulations (Pumir
1994). Finally, in an isotropic LES of a passive scalar field by Lesieur & Rogallo
(1989) (with eddy viscosity v, and eddy diffusivity x, both obtained under the as-
sumption of universality and inertial-range exponents p = q = %) the passive scalar
field showed an anomalous scaling behaviour I' (k) ~ k=! in the inertial-convective
range of scales which is inconsistent with the underlying modelling assumptions. In
fact, it is well-known that even in DNS with passive scalar fields where Pr = O(1) the
intensity of fluctuations in the scalar small scales seems to be much more pronounced
than in the velocity field (Pumir 1994; Bogucki, Domaradzki & Yeung 1997). None
of these different pieces of evidence support the idea that Pr, is a universal constant.

1.3. Kinematic simulation and small-scale turbulent flow structure

In this work we propose to use pairs of fluid elements to describe passive scalar
fluctuations, which entails advecting ideal particles through a large-eddy simulated
velocity field. The turbulent Lagrangian velocity of these particles results from the
large-eddy field (which is known) plus the contribution from the small-scale subgrid
field (which is not known). The mean scalar field is dominated by the turbulent large
scales and we may therefore expect that particles advected by the large-eddy field
only (plus perhaps some additional randomness to correct for the turbulent kinetic
energy which is contained in the small scales) is a good approximation of the mean
scalar field. However, here we are interested in simulating concentration variances
which are determined by all turbulent scales, including in particular the small scales
which are not explicitly computed but filtered out.

Can we find an explicit form of the subgrid velocity field which incorporates the
effects of the small-scale turbulence flow structure on Lagrangian relative statistics
sufficiently accurately and which is compatible with and can be consistently super-
imposed on the supergrid velocity field? This means in particular that the modelled
subgrid velocity field should be incompressible, obey Kolmogorov’s inertial-range
scaling properties, and contain the vortical, straining and streaming regions that exist
in the small scales of the turbulence.

Lagrangian stochastic models define the stochastic velocities only in a Lagrangian
frame whereas every flow realization of a kinematic simulation is based on an
incompressible Eulerian flow field with eddying, straining and streaming regions
(Fung et al. 1992; Fung & Vassilicos 1998). Indeed, kinematic simulations are non-
Markovian Lagrangian models where it is the eddying, straining and other structures
that account for the statistical properties of the velocity field but it is the straining
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structures that are mostly responsible for particles moving apart from each other
(Fung et al. 1992; Fung & Vassilicos 1998).

An appropriate model for a subgrid advection velocity of the fluid elements should
not only reproduce the correct scaling properties but also correct absolute values.
The absolute value of particle-pair separation is determined by the dimensionless
Richardson constant G,. The only experimental measurement of G, known to the
present authors is that of Tatarski (1960) who obtained G, = 0.06. Unfortunately,
his measurements are fraught with uncertainty but one can perhaps say, with some
confidence, that G, is a number between 0(1072) and O(10~!). Turbulence closures
such as LHDIA and EDQNM lead to much larger values of G, in the range 2.42
to 3.5; and stochastic models (e.g. Thomson 1990) also give G, = 0(10~!). However,
kinematic simulations of turbulent-like velocity fields yield G, = 0(1072) to 0(107!)
and thus support the experimental data of Tatarski (1960) (see also Fung et al. 1992;
Elliott & Majda 1996 and Fung & Vassilicos 1998 for a discussion on the value of G).
This may not come as a surprise because it is now well established that persisting flow
structures exist in the turbulent small scales (Jiménez & Wray 1998 and references
therein; Cadot, Douady & Couder 1995), and such long-lived spatial flow structure
does not seem to be currently well incorporated in stochastic models. The point
that we make is that spatio-temporal flow structure strongly influences two-particle
statistics. On the other hand, one-particle statistics are not so significantly affected
by flow structure, which is consistent with the ability of even random walk models to
correctly represent average scalar statistics.

The importance of small-scale turbulent flow structure has been also emphasized by
Malik & Vassilicos (1999) who studied (among other statistics) the Lagrangian two-
particle relative velocity flatness which is a measure of the velocity field’s intermittency.
Their results agree well with DNS predictions (Yeung 1994) and show much higher
flatnesses than stochastic models (Heppe 1998). The difference has been explained
by the qualitative difference of the velocities that are generated by KS and current
stochastic models, respectively.

Another important difference (besides the incorporation of flow structure) between
stochastic models and kinematic simulations is that the Lagrangian integral time
scale T, is a model input parameter of the stochastic model whereas it is an output
of kinematic simulations. For a stochastic model this parameter is a function of the
Lagrangian inertial-range constant Cy which is usually chosen such that it corresponds
to Lagrangian experimental data (Cy ~ 4). These data are however highly uncertain,
and stochastic model simulations have been reported where C, has been simply
chosen such as to fit experimental scalar variance results (see, for example, Borgas
& Sawford 1996). The same authors in fact propose to use a Cy; much in excess of
the experimentally suggested value, i.e. Cy > 6, for a better fit with the corresponding
variance statistics.

1.4. Plan of the paper

The plan of the paper is as follows. In §2 we give some background on the way that
fluid element statistics are related to the scalar field’s statistics. In §3 we describe
kinematic simulation in some detail and investigate its performance as a Lagrangian
model of particle dispersion. In §4 we present the kinematic subgrid model. We
demonstrate how the kinematic model flow can be used in simulating scalar dispersion
with explicitly resolving inertial-range scaling and flow structure effects. We discuss
the effect of the inertial-range velocity field on two-particle probability densities and
discuss the results obtained for the release from an instantaneous line source. In
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particular, we discuss the effect that the small value of G, has on scalar variance
statistics. Finally, we conclude in § 5.

2. Fluid element concentration statistics

In this section we state the theoretical results concerning the relation between
particle and scalar statistics that we need to use in our LES-KS modelling. For more
detailed information on fluid element statistics the reader is referred, for example, to
Thomson (1990). We also introduce Sawford’s (1983) approximation which is useful
(if not essential) to compute scalar variances numerically.

2.1. The separation p.d.f.

The first and second moments of the scalar concentration are related to the statistics
of the motion of single particles and particle pairs, respectively. Relations between
higher-order moments and multiple particle statistics can also be derived formally
(Egbert & Baker 1984). This section is devoted to first- and second-order moments
and we introduce the appropriate approximations to make the concentration variance
field accessible to computations based on clouds of particles.

Neglecting effects of molecular diffusion, the mean concentration field (6(x,t)) is
generally the weighted sum of concentrations assigned to single particles at their
release from points x’ at times ' reaching the observation point x at time ¢:

(0(x, 1)) :/ /Pl(x,t;x/,t’)S(x/, f)ydx'dr, (2.1)

where P; is the probability density function (p.d.f.) for a particle which is at x at
time t to have come from x’ at a time ¢’ prior to t (¢ < t). The brackets (-) denote
ensemble averages. Similarly, the two-point correlation is given by

00t = [ [ ] [P s )56
.t <t
x S(x}, ty) dx} dx), di dt) (2.2)

where P, is the p.d.f. for two particles which are at x; and x; at time ¢ to have come
from x| and x) at times ¢}, t, prior to t (t},t; < t). Equations (2.1) and (2.2) are valid
for arbitrary source distributions in space and time.

Here we restrict ourselves to instantaneous source releases so that S(x',t') =
S(x")o(t' —ty) where 0 is the delta function and ¢ is the time of instantaneous release.
In the case of non-instantaneous releases, the particle ensemble that is necessary to
obtain a converged P, numerically can be prohibitively large, but also theoretical
studies to date (see, for example, Thomson 1996) mainly address instantaneous
releases. Note however that an instantaneous release from a line or area source in
stationary, isotropic turbulence is a good approximation of a continuous release from
a point or line source, respectively, in stationary turbulence with a constant mean
wind (Sawford 1983).

For an instantaneous release, (2.1) and (2.2) become

(0(x, 1)) = /Pl(x,t;x’, t0)S(x')dx/, (2.3)

(0(x1,1)0(x2, 1)) = //Pz(x1,xz,t;xi,x’z,to)s(x’l)S(x/z)dxﬁ dux. (2.4)
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We are particularly interested in the concentration variance field (0%(x,t)). To take
into account the effect of molecular diffusion, Durbin (1980) averages over a sphere
of diameter equal to one appropriate dissipative microscale 5 (which is much smaller
than the integral length scale L of the turbulence). The limit |x; — x,|/L — 0, which is
different from |x; — x;3|/n — 0, is approximately equal to the average over the volume
V, (~ O(n?)) of this sphere centred at x, i.e.

1 1
pz(xat;xllaxéa tO) = V/ V/ P2(x17x25t;x,17x/27 tO) dxl dx2
n Vy

~ lim  Py(xy, xo, 15X, X5, 1g). (2.5)
[x—x1|/L—0
[x—x3|/L—0

This limit effectively means that |x; —x,|/# is of order one in the limit of high Reynolds
numbers where L/ — oo. The microscale n may be unambiguously identified with
the Kolmogorov scale ng when Pr = v/ = O(1). Durbin (1980) then computes
(0*(x,t)) by using (2.4) and (2.5) as follows:

/ / (x1,0)0(x2,1)) dx; dx;

=//pz(x,l,‘;x’l,x’z,tO)S(x'l)S(x’z)dx’1 dx,. (2.6)

Equation (2.6) is important in this study as it transforms the problem of calculating
the concentration variance into one of determining the two-particle p.d.f. p, (assuming,
of course, that the source distribution is known). We now discuss the assumptions
and method for calculating this p.d.f.

(0(x,1)%)

2.2. Computing the separation p.d.f.
Sawford’s working assumptions

To determine P, and therefore p, numerically is computationally very expensive
because it requires a large number of particles. Sawford (1983) introduced a very
useful approximation to reduce the numerical cost and we will make use of this
approximation. We note first that particle pairs can be equivalently described either
by the particle positions xi, x; or by the relative separation 4 and the centre of mass
z:

A=x;—Xx3 z=2x1+x,

Py(A,z,t;4",2' 1) dA" dz’ = Py(xy, x,, 15 X, X5, o) dx| dx).
For Durbin’s limit where |x; — x;|/L — 0 we write

Py(4dg,z,t;4',2', t9)dA’ dz’' = lim  Py(xy,Xa,t;x), x5, tp) dx| dxb, (2.7)
[x—x1]/L—0
|x—x2]/L—0

where |4¢] = O(n) and z = 2x. Note that P, may be assumed to be a function of |4y|
only rather than 4, because of the isotropizing effect of molecular diffusion at scales
of the order of # and below. Except where stated otherwise, in this paper’s numerical
simulations we set |4¢| = n (which is equal to nx because we restrict ourselves to
flows where Pr ~ O(1)). From (2.5) and (2.7)

Py(do,z.1;4',2', 1) dA' dz' = pa(x, 5 x), x), 1) A, dx, (28)
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where |4¢] = O(n) and z ~ 2x. Equation (2.8) relates the two-particle p.d.f. p, in (2.6)
to the p.d.f. Py(dg,z,t; 4,2/, ty) of relative separations and centres of mass. Sawford’s
assumptions concern this p.d.f. P»(dg,z,t;4',2', to).

Sawford’s first assumption is one of statistical independence of 4 and z, i.e.

PZ(A()aZa £ A/,Z,, tO) =~ pA(AO, L] A/a to)pZ(z’ t;Z,’ tO) (29)

It is not clear how appropriate this assumption is in general, but it is routinely
used in stochastic models and we use it here too. In stochastic models 4 and z
are by construction statistically uncorrelated for all times. In §4.4 we validate this
assumption of independence for our modelling approach.

Sawford’s second assumption is that x and z are both normally distributed. And
his third assumption is that the instantaneous source is a Gaussian. Denoting a
d-dimensional Gaussian distribution of variance ¢> by G, that is

1
mexp [—|x\2/202], d=3
Gy(x,0%) = ﬁ exp [—(y* +2)/26%], d=2 (2.10)
1

m eXp [—22/20'2] . d= 1,

these two assumptions can be specified as

Pi(x,1;x,t0) & G3(x' — x,02(to; 1)),
1 0 3 0 (2.11)
p-(z,t;2',t0) & G3(z' — z,62(to;3 1))

for the p.d.f:s of single particles and centres of mass of particle pairs, and
S(x) = Gy(x,3) (2.12)

for the instantaneous source distribution, according to whether the source is a point
source (d = 3), a line source (d = 2) or a plane area source (d = 1). The variances o2
and ¢? are, respectively, those of x and z at a time ¢ following release at a time t,.
And ¢} in (2.12) is the variance of the Gaussian source and may be interpreted as a
measure of the size of the actual source.

Thus, using (2.11) and (2.12) in (2.3) the mean concentration field is Gaussian

(0(x,1)) = Ga(x, 05 + a.(to; 1)), (2.13)

which is generally well accepted as a good approximation for the mean concentration
field (Sawford 1983). Using (2.11), (2.12) and (2.9) in (2.6) the mean variance field is

(0*(x,1)) = [ / pa(do, t; A", 10)Gy(A,63) dA'| G4(2x, 0.(t;1)* + 0?) (2.14)

with |4o| = . Equation (2.14) is of crucial importance to this study because it reduces
the calculation of (0%(x,t)) to the computation of p,(do,t;4’,ty) and o.(to;t). Whilst
the calculation of a.(ty;1) is straightforward, that of p,(do,t;4’,ty) for a fixed |4o|
is not, and we attempt to reduce its calculation to the much easier calculation of
pa(A,t; Ay, to) for a fixed |4y

Backward versus forward diffusion

The numerical computation of p,(do,t;A’,ty) for a fixed |4o| is very impractical be-
cause it requires integrating pairs of trajectories for all possible initial (¢y) separations
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: (@)
—
\
to X, .
‘//\—_\/\/./\/ X2
X3
=l X (b)

FIGURE 1. Time reversal for the movements of particle pairs. (a) There is no difference for particles
starting from x{,x), ¢y and arriving at xy,x,,¢ (moving forwards in time); and particles starting
from xy, x,,t and arriving at x}, x5,y (moving backwards in time). (b) However, particles starting at
x1,X2,t) and arriving at x,x5,t may a priori not be expected to have the same statistics.

A" and keeping only the tiny fraction of those pairs which, at time ¢, are at a distance
|4o| from each other. However, in Monte Carlo simulations of stochastic models (e.g.
Thomson 1990) it is common to use a symmetry property of P; and P, (Egbert &
Baker 1984), namely (see figure la)

Pl(x,t;x’,to)=P1(x’,t0;x,t), } (2 15)
Py(x1, 2,15 X7, %5, o) = Pa(x), X, to; X1, X2, 1), '
which implies when (2.9) is valid and because p.(z,t;z',ty) = p.(z', to;z, t), that
pa(do, t; 4, to) = pa(4', to; Ao, t). (2.16)

Hence, it is possible to calculate p,(do,t;4’,ty) by integrating pairs of trajectories
backwards in time starting at time ¢t with separation 4, and recording all separations
A’ at time ty < t. Such a scheme is clearly more practical than the direct calculation
of py(do,t;4’,ty) described above but requires an integration backwards in time.

Unfortunately the particles in the present study are advected by Navier—Stokes
dynamics which do not possess time-reversal symmetry and therefore cannot be
integrated backwards in time. It is not clear how, in general, the backward diffusion
p.d.f. ps(4’,to; Ao, t) and the forward diffusion p.d.f. p,(4’,t; 4y, t) differ quantitatively
(see figure 1). However, in stationary turbulence the backward and forward diffusion
p.d.f.s are equivalent (Sawford & Hunt 1986) and we can integrate forwards in time
to calculate py(4',t; 4o, 1) for a fixed |4¢| as a proxy for ps(do,t;4’,t,). We note,
however, that the validity of using ps(4’,t; 49, ty) has to be checked in non-stationary
flow configurations.

The separation p.d.f. in isotropic flows

We remark that ps(do,t;4',t9) in (2.14) as well as the forward diffusion p.d.f.
pa(A't;4g,19) are p.d.f.s of the three-dimensional vectors Ay and A’. Both these
p.d.f.is are numerically very costly to compute and it is useful to take advantage of
the symmetries of p,. In what follows we concentrate on p,(4’,t; g, ty) but these
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simplifications can be introduced for the backward p.d.f. ps(do,t;4’,ty) in a similar
way.

In an isotropic flow p4(A4’,t; Ay, ty) is a function of 4y = |4¢| and 4’ = |A'| only, i..

pa(A',t; 4o, t0) = pa(4', 85 Ao, to). (2.17)
The right-hand side is equivalent to the one-dimensional p.d.f.
pA(A/, [;A(),l’()) = pA(A;, t; Ao, to | A; =0and Alz =0) (218)

provided that the p.d.f. on the right-hand side is computed by choosing initial particle
separations A, at time ¢, which are randomly and isotropically distributed; at time
t one then computes 4, =i d4) with i =0 ... N by using a limited number N of
increments dA’ for all A, 4" € [0,d4[]. Likewise, we can define a one-dimensional
p.d.f. where averages are performed either on one other component or on two
components of A’

P4 t; Ag,tg| A, =0 or A, =0),
S 2.19)

P4, 15 Ao, o).
D, 1s useful for computing variances from a line source (where averages are performed
along the source distribution); and similarly, p, is useful for computing variances from
an area source. In §4.4 we compute the p.d.f:s p4, p, and p, to identify inertial-range
effects on these p.d.f.s and, in particular, we use p, to compute the scalar variance
from a line source where we can compare our model with experimental results.

3. Two-particle dispersion in three-dimensional kinematic simulations
3.1. Kinematic simulations

Following Kraichnan (1970), Drummond, Duane & Horgan (1984) and Fung et al.
(1992) ‘kinematic simulations’ of turbulence are based on random flow fields (as
opposed to simulation techniques based on dynamical equations of motion) that obey
incompressibility and certain statistical properties that are known from theory and
experiments. The random flow fields provided by kinematic simulations are presented
here with a view of using them as a means to incorporate the effect of the turbulent
small scales on the scalar field. This implies that the random flow field has to follow
Kolmogorov’s inertial-range scaling. The numerical procedure to create such fields is
as follows.

Similarly to Fung et al. (1992) and Malik & Vassilicos (1999) we generate an
incompressible three-dimensional turbulent-like velocity field ugg(x,t) by summing
different Fourier modes

Ni
ugs(x,t) = Z (a, cos (k,x + wyt) + b, sin (kx + w,t)), (3.1)

n=1

where N, is the number of Fourier modes, a, and b, are the amplitudes corresponding
to wavevector k,, and w, is an unsteadiness frequency. Such velocity fields have been
shown to be stationary in time and space (Fung et al. 1992; Fung & Vassilicos 1998).
The wavevectors k, are randomly distributed in spherical shells,

k, = k,(sin 0 cos ¢, sin 0 sin ¢, cos 0)

with uniformly distributed random angles 0 € [0,2x], ¢ € [0,x]. The amplitudes a,,
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b, are random uncorrelated vectors such that
ak, =b,k, =0
to ensure incompressibility, and
s> = 1B, = 2E (ky) Ak,
where E(k) is a prescribed Eulerian self-similar energy spectrum of the form

_ CK€2/3k_5/3 fork; <k < k,,
E(k) = { 0 otherwise. (3.2)

Ck is the Kolmogorov dimensionless constant (and we choose Cx = 1.5 throughout
this study in agreement with reference data, e.g. Sreenivasan 1995), € is a constant
with dimensions of a dissipation rate, and ki, k, (with n = 2n/k,) define the range
of wavenumbers where the random velocity field obeys the —% inertial-range scaling
law. A variety of different distributions of modes k, may be used and following Fung
et al. (1992) we choose among algebraic, geometric and linear distributions,

k n—1/Nx—1
ki (k"> (geometric)
1
kn =k nlostky/ki)/log Ni (algebraic) (3.3)
k, —k
ki + (1\2 — 1‘) (n—1) (linear),

with n € [1, Ny], Ak, = (kyy1 —kn—1)/2 for n € [2, Ny — 1], and Ak; = (ko — k1)/2,
Aley, = (ky, — kg 1)/2.

The unsteadiness frequency w, can be chosen at will and it has been proposed
that w, ~ \/k}E(k,), i.e. w, is proportional to the eddy-turnover time of wavemode
n (Fung et al. 1992; Fung & Vassilicos 1998); or that w, ~ Uk,, i.e. all modes are
advected with a constant velocity U (Turfus & Hunt 1987; Elliott & Majda 1996).
Previous studies of three-dimensional KS fields suggest that the choice of w, has no
significant influence on most statistical properties of particle pairs for times ¢ smaller
than the integral time scale Ty, and as long as w,/+/kJE(k,) or w,/(Uk,) are not
much larger than 1 (Malik 1996; Malik & Vassilicos 1999). In preliminary simulations
for the present study we have confirmed this observation on the r.m.s. of particle-pair
separations y/(4?), and have therefore set w, = 0 for all n in the remainder of this
paper. We suspect that this insensitivity to w, is characteristic of three-dimensional
turbulent-like flows where, unlike two-dimensional flows, streamlines can have a
chaotic structure (Ottino 1989).

We stress that there are no free parameters in this simulation technique (of course,
the shape of the energy spectrum could, at least in principle, be viewed as a free
parameter); the number of modes N, and the mode distribution are chosen such that
the resulting statistics converge. We also stress that the KS flow field (3.1) is not
a model of Eulerian turbulence, but the basis for a Lagrangian model of turbulent
dispersion. Malik & Vassilicos (1999) have demonstrated the very good agreement
between KS and DNS Lagrangian two-particle statistics for numbers of KS modes
N, as small as about 100!

Despite the simplicity of the method, the numerical cost of performing the sum in
(3.1) can be very large for an order of 100 Fourier modes because FFTs cannot be
used in KS. Therefore, we adopt the adaptive time-stepping procedure proposed by
Elliott & Majda (1996) to compute two-particle statistics over a large range of times.
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FIGURE 2. Log-log plot of the energy spectrum (3.2) for Ny = 10 modes and different mode
distributions (3.3). The symbols indicate the values of the k, and the geometric distribution leads
to equally spaced energy shells for log (k), the linear distribution has most wavenumbers packed in
the highest modes, and the algebraic distribution is somewhere in between.

Assuming that the separation statistics are determined by eddies of size /(42) only
(this is essentially the locality assumption, for more details see Fung & Vassilicos
1998), Elliott & Majda (1996) propose to use an adaptive time step dt, given by

dt, = u/ T2y | VD)

with a constant o < 1. We set o = 0.25 for all simulations presented here but found
no changes in particle-pair statistics for other values of a. We tested the adaptive
time-stepping procedure by comparing it to a few (very time consuming) simulations
with constant time stepping; no significant difference in the two-particle statistics was
observed between adaptive and constant time steps.

In figure 2 we plot the energy spectrum (3.2) for N, = 10 modes and different
wavenumber distributions, (3.3). It is shown that the geometric distribution leads
to equally spaced energy shells for log (k) whereas the linear distribution has most
wavenumbers packed in the highest modes. The algebraic distribution is somewhere
in between. We investigated which of these distributions leads to the fastest converg-
ing statistics. In figure 3 we plot the Lagrangian velocity correlation function for
the different mode distributions and for different numbers of Fourier modes. The
distributions converge towards an exponential decay exp(—t/T.) where T, = 0.65.
It is also seen that the geometric distribution leads to the fastest convergence; no
significant difference is seen for the cases Ny, = 20 and N, = 200. This may not be
too surprising because, for the same N, the geometric distribution has more modes
than the other distributions in the low wavenumbers which dominate the correlation
function. For the algebraic and linear distributions the correlation function is still
far from converged when N, = 20. We also compared the mean separation of par-

—1

(3.4)
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FiGURE 3. The effect of different mode distributions on the Lagrangian velocity correlation function
R = (ui(to)ui(to + 1))/ (u?), where u; are the components of the Lagrangian turbulent velocity. The
distributions converge towards an exponential decay exp (—t/Ty.) where T; = 0.65. The geometric
distribution leads to fastest convergence in terms of the number of modes needed.

ticles for different distributions and found no significant differences. This was to be
expected because the turbulent small scales dominate the two-particle statistics, and
the difference between the mode distributions is not so marked at the small scales. As
a consequence, all the results presented in the rest of this paper are obtained using
the geometric distribution of wavenumbers.

3.2. Two-particle dispersion

In this section we investigate the performance of KS with respect to two-particle
statistics. Previous studies of two-particle statistics which were obtained from KS
showed either only very short ranges of inertial scaling in three dimensions (Fung
et al. 1992) or were restricted to two dimensions (Elliott & Majda 1996; Fung &
Vassilicos 1998). By applying Elliott & Majda’s (1996) time-stepping procedure to the
three-dimensional KS velocity field (3.1) we are able to obtain a scaling range that is
significantly larger than that of Fung et al. (1992).

In the inertial range and under the assumption of locality (see Fung & Vassilicos
1998), the mean separation of particle pairs scales like

(43(1)) — 45 = Get’, (3.5)

where 4, is the particle separation at time t,, (4%(t)) = (|4%(¢)|) is the mean-square
particle separation at time t, ¢ is the turbulent dissipation rate and G, is a dimen-
sionless universal constant. In figure 4 we summarize the simulation results that we
now discuss (see also table 1 for the simulation parameters). A well-defined ¢ scaling
over almost 2 decades is observed and we estimate G, to be

G, =~ 0.07.
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Setup I Setup 11 Setup 111
Wy 0 0 0
N (geometric) 120 120 120
No. of particles 1024 1024 1024
Upms 1 1 1
€ 0.54 0.54 0.54
ky /K1 10° 103 10!
n 6.28 x 1073 6.28 x 1073 6.28 x 107!
1, = el 570 x 10~ 1.23 x 102 2.65x 107!

TaBLE 1. Simulation parameters for all kinematic simulations (except for the convergence test in
figure 3 where N, has been varied). The ‘energy’ of the kinematic simulation is normalized such that
(%)u,.,m = [E(k)dk = 1.5. The parameter ¢ with dimensions of a dissipation rate is then obtained

from e = u,.meIj/zij. When using KS alone, u,,,; and therefore € is an input parameter; when KS
is used as a subgrid model (see §4) u,, is derived from the LES field and we denote it tysks-

This value for G, agrees well with previous kinematic simulations; Fung et al.
(1992) estimated an asymptotic value of O(0.1) by investigating different (but all
short) sizes of the inertial range; Elliott & Majda (1996) found in their Monte Carlo
simulations of fractal flow fields a G, = 0.062 +0.008 with a very large inertial range.

In figure 4(a) we present the effect of varying the ratio of the inner to the outer
wavenumbers k, /k;. The improvement of the * scaling with increasing range of inertial
scales in the velocity field is evident. In figure 4(b) we investigate the effect of varying
the initial separation 4, for the case where k,/k; = 10°. The inertial-range behaviour
is reached for all cases and it is seen to be broadly speaking independent of the initial
separation. For early times, t/7, < 10%, where 1, is defined as 7, = ek, 23 the most
extreme cases 4y = 1072y, 105 display a slightly non-smooth behaviour. This is due
to the adaptive time-stepping procedure which can produce rather large variations
of the time-step size for times prior to when Richardson’s inertial-range scaling is
observed. This has however no effect on two-particle statistics in the inertial range as
we find by comparison with non-adaptive time stepping for a few selected cases. In
figure 5 we find that for both the mean-square separation and the separation p.d.f.
(see also §4.4) the differences are within the statistical scatter. One of the simulations,
with 4y = 5, has been left running on the computer for a long time to show that the
behaviour for very large times when particle pairs move independently of each other
(Thomson 1990), (4%(t)) ~ t, is also recovered in KS. We remark that the adaptive
time stepping (3.4) destroys this correct long-time scaling and we therefore activate
the adaptive time stepping only for t < T} and apply a constant time step for t > T},
where T is the Lagrangian integral time scale of the flow. Indeed for ¢t > T we
have (4%(t)) ~ t.

3.3. Discussion

We have determined and tested various issues involved in the running of KS (un-
steadiness, time-stepping procedure, wavenumber distribution, number of modes), and
have confirmed that particle pairs in a three-dimensional homogeneous and isotropic
KS velocity field with a k=3 energy spectrum separate according to Richardson’s
3 law, and that the Richardson constant G, ~ 0.07. Stochastic models of turbulent
two-particle dispersion lead to values of G, that depend on the value of the constant
Cy, and for the admittedly highly uncertain experimentally obtained value of C,,
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FIGURE 4. Mean-square separation in KS: (a) varying size of inertial range k,/k; = 10, 10°, 10°
(initial separation 4y/n = 1); (b) varying initial separation 4,/ = 0.01, 0.1, 1, 10 (inertial range
ky/ki = 10).

Co = 4, they lead to values of G, that are significantly larger than that of KS (often
by one or two orders of magnitude — see Pedrizzetti & Novikov 1994; Heppe 1998;
and discussions in Fung & Vassilicos 1998; Fung et al. 1992 and Elliott & Majda
1996).

An important drawback of a kinematic simulation is that by construction its
Lagrangian integral time scale is imposed. By prescribing a particular energy spectrum
for all turbulent scales the Lagrangian integral time scale directly depends on the



(42)

p.d.f(4)

1011 L

107

108

107!

2.0

15

1.0

0.5

Scalar subgrid model with flow structure

331

T T T T T T

(@)

- — — — Adaptive time step PP

Constant time step

10

108

lI.O
Ala,

2.0

FIGURE 5. The effect of the adaptive time stepping in KS: (a) mean-square separation (initial
separation Ao/n = 1) and (b) the separation p.d.f. (2.18) in the inertial range at t/(u?,,/€) = 0.1, see
also figure 14 for comparison.

largest (kinematic) turbulent scales. Because the large scales of the turbulence are
not included in the KS, this integral time scale is not very accurately predicted.
Hence, there is an additional advantage in using KS in conjunction with a large-
eddy simulation because the Lagrangian integral time scale can be prescribed by the
large-eddy field whilst the kinematic field accounts only for the turbulent small scales.
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4. A KS scalar subgrid model

In this section we show how KS can be used as a scalar subgrid model for LES
and enable the computation of scalar variances in LES. In §4.1 we briefly discuss the
Lagrangian subgrid models for scalar fields and describe the limitations of previous
LES with particles. In §4.2 details of the new simulation technique are given and in
the subsequent subsections we discuss the results obtained by the LES with the KS
subgrid model. In §4.3 we present two-particle dispersion results. In §4.4 we discuss
the relation between two-particle statistics and the scalar variance field and we give
one example where we can compute the variance field from particle statistics and we
compare the results with experiments.

4.1. Lagrangian subgrid models for scalar fields

Instead of considering a continuous scalar field 6 we may imagine the passive scalar
as consisting of a cloud of particles (or fluid elements), each particle retaining its
identity while it follows the flow. For a large number of (sufficiently small) particles,
the equivalent of the scalar advection—diffusion equation (1.4) is given by

dx = udt + 2k dW (1), (4.1)

where dW (t) is a Gaussian white-noise process with zero mean and variance dt, and
u(x(t),t) is the Lagrangian velocity at point x(t) and time ¢t. This Lagrangian descrip-
tion of scalar fields has been mostly used in stochastic models of turbulence, and in
fact goes back to Taylor (1921) who approximated the effect of turbulent motions by
Gaussian white-noise increments to derive a model for the mean concentration field
in turbulent flow. For recent accounts of stochastic models see Thomson (1990) or
Pedrizzetti & Novikov (1994).
In a LES (4.1) can be written as

dx = @+ u)dt + 2 dW (1), (4.2)

where «' is the (unknown) subgrid velocity field that needs to be modelled to obtain
a solution for the passive scalar field.

Equation (4.2) has been applied to LES in dispersion studies in the atmospheric
boundary layer (e.g. Mason 1992; Hadfield 1994; Kemp & Thomson 1996). However,
in all these studies the subgrid velocity field was modelled by a white noise with a
given eddy diffusivity «;, i.e. «' dt = /2, dW (t) and therefore

dx = @dr 4 /2, dW (1), (4.3)

where molecular diffusion effects have been neglected because k, > x. The choice of
k; in these studies was, as usual, based on the assumption of a constant turbulent
Prandtl number.

Equation (4.3) is in fact the equivalent of the filtered scalar advection—diffusion
equation (1.6) where the gradient-diffusion assumption (1.8) has been used and
k is neglected in front of k,. However, in the present LES, we use (4.2) instead
of (4.3) and therefore make no gradient-diffusion assumption for the scalar field.
Instead, we assume the KS form (3.1) for the subgrid velocity #' which means that
' is incompressible, compatible with Kolmogorov scaling and contains subgrid flow
structure. It also means that, although #’ is not accurate in the Eulerian frame, it does
generate accurate Lagrangian statistics as demonstrated by Malik & Vassilicos (1999)
and our results in § 3. The alternative gradient-diffusion strategy whereby the subgrid
velocity field is modelled by a white noise enhances one-particle diffusion but the
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N Box size ke/ko Ups L T Tk € O
32 2n 15 1 1.13 1.2 1.14 043 0.037

TaBLE 2. The simulation parameters of the velocity LES. The low-energy modes |k| < 2.5 are forced
such that the total energy E = _[kl" E(k)dk is kept constant with E = 1.5. The mean dissipation rate

is obtained from & = —(dE/dt), and its variance is defined by 62 = ((€ — €(t))?). L is the turbulent
integral length scale, T, is the Lagrangian integral time scale and Ty is the eddy turnover time.
ko = 2m/(box size) = 1 in arbitrary units denotes the smallest wavenumber of the simulation.

scaling effects of the inertial subgrid range on two-particle statistics are lost. When
the subgrid velocity #' is modelled by KS such effects are included and two-particle
statistics display inertial scaling as well (see § 3).

The mean scalar field is mainly determined by the large turbulent scales which
contain most of the turbulent kinetic energy, and it is therefore to be expected that a
simple model like (4.3) which adds only some additional randomness to the large-scale
turbulence is sufficient to predict the mean concentration field. On the other hand,
the mean concentration variance is largely determined by the (self-similar) structure
of the turbulent small scales and a Gaussian white noise is clearly not appropriate
to represent a Lagrangian velocity field that can generate two-particle inertial-range
Richardson scaling. Indeed, whereas the studies of Mason (1992) and Hadfield (1994)
showed results for the mean spreading behind point sources, no estimates for the
variance field could be given. In this study we propose an approach which does not
rely on an eddy diffusivity like (4.3) but models (4.2) with KS. Accordingly, our model
allows us to compute (0?(x,t)), i.e. the mean variance field (given the assumptions of
the model), whereas the eddy diffusivity allows only the (insufficient) approximation
(0%(x,t)) to be computed.

4.2. KS as a scalar subgrid model for LES

We propose to use the kinematic random velocity field from §3 as an approximation
of the filtered subgrid field,

dx = (@ + ugs) dt (4.4)

with ug s being the approximation for #’ in (4.2), and where molecular diffusion effects
have been neglected.

We use in this study a spectral LES of stationary isotropic turbulence for the
velocity field #u, see table 2. To obtain stationarity a low-mode forcing is employed
for 0.5 < k/ky < 2.5, such that the rate of energy input by the forcing is equal to the
energy lost in the previous time step so that the overall energy in the field is kept
constant. kg is the smallest wavenumber of the LES which in our case for a domain
size of 2w in arbitrary units is ko = 1; this wavenumber should not be confused with
any of the wavenumbers k, = k; ... ky, of the KS field.

In figure 6 we show schematically in wavenumber space how this model adds the
filtered subgrid scales to the resolved scales. Provided the LES is defined by a sharp
Fourier cutoff wavenumber k. that is within the inertial range of scales, we can add
the subgrid velocity field with the appropriate amplitude at the cutoff. The lowest
wavenumber k; of the KS subgrid field is set equal to the cutoff wavenumber k. of
the LES, k; = k.. Whereas the modes k < k. are correlated via the evolution of the
velocity field in the large-eddy simulation, none of the modes k > k. are correlated
with each other but chosen independently from each other in the kinematic field.
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FIGURE 6. Sketch of the coupling between LES and kinematic subgrid model. The LES is assumed
to have a sharp Fourier cutoff at k., with k. being within the inertial range of scales. The coupling
is made by matching the parameter exs of the KS field with dimension of a dissipation rate to the
dissipation rate in the LES field ey g5 = —dE(t)/dt, e gs = €ks.

Therefore, we do not try to correlate any of the kinematic modes with the large-eddy
field.

The coupling between the turbulent large and small scales is made purely at the
energy level by matching the rates of dissipation. We estimate the dissipation rate in
the LES field by

dE(t)

€LES = dr (4.5)
where E(t) is the total kinetic energy of the large-scale (supergrid) velocity field at
time t, and we set this value of e gs equal to the parameter exs in the subgrid
energy spectrum (3.2) at every time step. We have added the subscripts here to clarify
to the reader what the two different e that we define in this study are. Another
possibility to obtain a value for the dissipation rate of the LES would be to assume
Kolmogorov scaling at the cutoff wavenumber k., and thus for the dissipation rate
to be erps = (E(ko)k.”* /Cx)¥/ However this is likely to be more influenced by the
accuracy of the velocity subgrid model at the cutoff. As discussed by Lesieur & Métais
(1996), the spectral eddy viscosity (1.11) may not be expected to be very accurate
near the cutoff wavenumber and we therefore prefer to estimate the dissipation rate
by using (4.5).

From (3.2) we find that

) ky 4 3/2
exs = [3/ E(k)dk C¢' (k2 — k)
ke

T2 —1,2/313/2
~ [urms,KS CK kc ] s

(4.6)
where (%) ufms,KS = fkk” E(k)dk is the energy contained in the KS subgrid field.
Numerically, we set exs = eLgs at every time step and adjust the subgrid-scale energy
(%)ufms’,< ¢ by rescaling the amplitudes a, and b, in (3.1). The simulation procedure is
as follows. The random structure of the subgrid velocity field is selected at t = 0 once
and for all. Then, as the simulation proceeds, i.e. as the tracer particles are advected
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FIGURE 7. Energy spectrum of LES with KS subgrid model. The LES consists only of a very short
range of wavenumbers, 1 < k/ky < k./ko = 15. The KS model adds a well-defined inertial range of
scales with 15 < k/ky < 10°.

through the turbulence, the amplitudes a,, b, are rescaled at each time step according
to the mean dissipation rate e(¢) that is obtained from the velocity LES. In table 2
we give the numerical values of both the mean dissipation rate € and its variance
0?2 = ((€ — e(t))?), where the brackets denote time averages.

Figure 7 depicts a typical energy spectrum of the complete flow field u = + ugs
with k./ky = 15. For k/ky < 15 (with N = 32° grid points) the velocity field is
given by the LES simulation with the spectral eddy viscosity (1.11), and in the range
15 < k/ky < 10° we add the kinematic flow field with Kolmogorov’s k=3 inertial-
range scaling. The coupling between e ps and ekg is adjusted at every time step, the
fluctuations are very small however. It is seen that the KS field smoothly extends the
short inertial scaling of the LES field towards a large range of scales.

The definition of a LES based on the spectral eddy viscosity is formally valid
in the limit Re — oo. Using KS as a scalar subgrid model introduces explicitly a
minimal turbulent scale n = 2n/k, and a finite Reynolds number may be defined
as Re ~ (L/n)*? in accordance with Kolmogorov’s inertial-range equilibrium theory.
We stress that in this way we include finite Reynolds number effects in the scalar
statistics, but not in the velocity field dynamics.

A serious simplification made in the present model is the abrupt decimation of the
wavenumber density across the cutoff k.. Whereas the LES has many modes in its
outer shell at k., the KS subgrid field has only a single mode in every shell and the
shell spacing is increased as well. This abrupt change was not evident in any of the
particle statistics that we traced. The two-particle dispersion statistics appear very
insensitive to the change in wavenumber density across k.. Malik & Vassilicos (1999)
have shown recently that KS alone is able to reproduce the Lagrangian two-particle
statistics obtained from DNS (Yeung 1994). They used energy spectra similar to those
of the DNS study but with a dramatic reduction in the number of Fourier modes
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Setup I Setup 11 Setup 111 Setup IV
Subgrid model KS KS White noise No model
No. of particles 1024 1024 1024 1024
kw/kO 105 103 — -
ke/ko 15 15 — —
n 6.28 x 1073 6.28 x 1073 — —
1, = e B 6.13 x 1074 1.32 x 102 — —
Pr, — — 0.6 —

TaBLE 3. The scalar subgrid model setup. The LES from table 2 is used as a supergrid field
(k/k. < 15), and the KS or white noise velocities are added for the subgrid scales (k/k. > 15), sce
also (4.4) and (4.3). k; = k. is the smallest wavenumber in the KS subgrid model. The white noise
subgrid model is based on a turbulent Prandtl number Pr, where we use Pr, = 0.6 in agreement
with §1.2.

by a factor of four orders of magnitude! We conclude that the results of Malik &
Vassilicos (1999) are consistent with what we find here.

The numerical implementation of the KS scalar subgrid model is done by embed-
ding the particle advection scheme in the time stepping of the large-scale (supergrid)
flow field. This is due to the added turbulent small scales which put an additional
restriction on the time step size. The time step size for the velocity field dt, is given by
the numerical stability condition of the LES. The time step size for the particle pairs
is given by the adaptive time step dt, in (3.4). The actual step size for the particles
dt, is the smallest of these two step sizes, ie. dt, = min [dt,,d¢t,]. If df, < dt,, an
embedded inner time stepping loop exists during which the supergrid field is kept
constant (‘frozen’). This is a reasonable approximation because the turbulent large
scales contained in the LES field vary over much larger time scales. In fact, it is
important to note that the adaptive time step is only active over a short initial range
of times. For times /7, > O(1) (see figure 8b) we find that dt, > dt, and the step size
is limited by the numerical stability of the LES only. The velocity field is advanced
with a second-order Runge—Kutta method. If dt, < dt,, the additionally embedded
time-integration method for the particles is a simple Euler forward. The choice of this
most simple method for the particle advection is motivated by numerical cost only.
However, tests were performed in KS alone with different integration methods and
no improvements on particle statistics could be identified with higher-order methods.

4.3. Two-particle dispersion

Having demonstrated that KS is capable of producing, in terms of two-particle
statistics, a reasonable inertial-range flow field, we turn to the coupling of kinematic
fields with LES. The relevant simulation parameters are summarized in tables 2 and 3.
To obtain the Lagrangian supergrid velocities an interpolation procedure is necessary
and different methods have been tried. No significant difference between simple linear
interpolation and the more accurate cubic spline interpolation could be identified, and
we present here results based on linear interpolations to obtain the LES supergrid
Lagrangian velocities.

The performance of the model in terms of two-particle statistics is depicted in
figures 8 and 9. Figure 8 shows, similarly to figure 4(a), the effect of different sizes of
the inertial subrange. Figure 8(a) displays the two-particle statistics normalized with
turbulent integral scales L and T, and the converging long-time behaviour due to
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the LES field (independent of the size of the inertial range) is visible. Figure 8(b) uses
the Kolmogorov scales n and t, for normalization as has been used in figure 4.
Figure 9 is added to show the effect on two-particle statistics of the subgrid velocity
field «'. The solid line shows the correct scaling behaviour using the kinematic subgrid
field. When using no subgrid field at all, we lose all the small eddying and straining
structures that tear the particles apart and as a consequence the initial separation
remains unaltered over a large range of times. It is only at very late times that the
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FIGURE 9. The effect of the KS subgrid model on the mean-square separation in LES is shown
by comparison to a simple eddy diffusivity model (where particle pairs move independently in the
inertial range) and no subgrid model (where particle pairs are on average moving only apart when
they are on integral scales).

effect of the large-scale turbulent motion is felt and the separation quickly increases to
approach the correct long-time behaviour dominated by the large scales. In the case
of an eddy diffusivity model (4.3) with Pr, = 0.6 it is seen that the added Brownian
motion acts also at small scales and results in t' scaling, followed by a short range
during which the inertial effects of the LES scales are weakly felt before the particles
again move independently apart for t > T}.

The results shown here are very similar to those of §3.2. The important difference
is in the integral scales of the flow. Whereas the integral scales in a purely kinematic
flow field are determined by the model itself, it is now the LES which determines the
integral scales. In fact, if we estimate the Lagrangian integral time scale from KS
alone (T, = 0.65, see figure 3), one obtains a value that is significantly lower than
the one obtained from the coupled simulation (T, = 1.2, see table 2). Importantly,
both experiments and DNS support the higher value, i.e. T u.,s/L =~ 1 (see Fung et
al. 1992; Snyder & Lumley 1971; Durbin & Hunt 1980 and Yeung & Pope 1989).

4.4. Separation p.d.f. and the scalar variance

We now use the KS subgrid model to compute scalar variance statistics. A numerical
estimate of the variance field has to rely on a number of assumptions as explained in
§ 2 and we first validate these assumptions before presenting results on the two-particle
p.d.f. In a first step we show that the forward integration is possible for two-particle
statistics in KS. We then validate for our LES+KS model Sawford’s assumptions
introduced in §2.2. Finally, using the LES+KS model we calculate the two-particle
p.d.f:s and the scalar variance field of an instantaneous line source.
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FiGure 10. By integrating backwards and forwards in time we investigate the reversibility of the KS
model. (a) For the mean-square separation virtually no difference between forwards and backwards
integration is evident. (b) The separation p.d.fs (2.18), (2.19) at one example of an instant of time
during the inertial range of times, and normalized with the mean-square separation. The lines are
obtained from a forward simulation, ie. t/(u2,,/€) = 0.1, and the symbols correspond to a backward
simulation with t/(u2,,/e) = —0.1. The difference between forward and backward integration is
within the statistical scatter.
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Forward diffusion

It was mentioned that the separation p.d.f.s for forward and backward diffusion
cannot a priori be expected to be the same. The calculation of the scalar variance is
based on the very impractical ps(do,t;4’,to), see (2.14). As was explained in §2.2, in
stochastic models one therefore simply integrates backwards in time (see (2.16)) which
for example in the case of a decaying turbulence field would lead to an increasing
turbulence intensity as time advances. Even for a statistically stationary turbulence,
integrating LES of the Navier—Stokes equations backwards in time is not possible.
We can reasonably assume however that for particle separations below the integral
scale the particle statistics are dominated by the kinematic subgrid model. Because the
kinematic model is based on a summation of Fourier modes we are able to integrate
forwards and backwards in time when using the kinematic field alone. In this way, we
can investigate the effect that time-reversal has on our model. In figure 10 we show
results for the mean-square separation and for the separation p.d.f:s p,, p, and p,
((2.18) and (2.19)), integrating forwards and backwards in time for a kinematic field
where the turbulent kinetic energy (%)u2 is kept constant in time. The mean-square

rms
separation is almost identical, and only for very short times t/(u?,/€) < 107* are
the two curves barely distinguishable. The three p.d.f:s are selected at one instant of
time within the inertial time range t/(u2,,/€) = 10~!. The lines are obtained from
a forward integration and the symbols correspond to the backwards simulation. No
difference can be seen within the statistical scatter. We therefore conclude that for
our model we may assume py(A4’,ty; Ao, 1) = ps(4’,t; Ay, tp). This enables us to validate
Sawford’s assumptions for this LES+KS model and to compute various p.d.f.s and
scalar variances from a forward simulation.

Validating Sawford’s assumptions

Sawford’s assumptions greatly simplify the computations of the mean concentration
and concentration variance fields, see (2.13) and (2.14). The first assumption is
that 4 and z are independent and in figure 11 we report a computation of three
components of the correlation tensor Corr(d;,z;) = ((4iz;) — (4:)(z;))/({47)(z7))"/>.
No significant correlation between 4 and z has been observed. A more stringent test
of the assumption of statistical independence between 4 and z is shown in figure 12
where we plot the separation p.d.f. p, conditional on different absolute values of the
centre of mass z. The unconditional p.d.f. p, is discussed below in more detail where
it is also plotted for different times (see figure 14a). We pick here a time within the
inertial range, t/(u2,/€) = 0.1, to test the statistical independence of 4 and z in this
range. It should be pointed out that the conditional separation p.d.f. is numerically
expensive to compute because it requires the computation of p, for various values
of |z|. Indeed, figure 12 is obtained from 100 realizations of the flow, each of them
with 1024 particles. We use KS without the large-scale LES in this test to keep the
computing time reasonable. However, as Sawford’s assumption is primarily made
for the inertial range where the KS flow structure dominates the particle statistics,
we expect no difference if LES turbulent large scales are added to the flow. The
conditional p.d.f. is computed by averaging over bands in z of band-width z,,,/10.
Even so, the p.d.f.s are noisy, in particular for high values of z/z,,, where less samples
are taken. But as is evident from the plot, they all show the same trend independently
of absolute values of |z| and the shape of the p.d.fis is in good agreement with
Thomson (1990).

The second assumption is the Gaussianity of the single-particle p.d.f. Pi(x) and
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FIGURE 11. The correlation functions Corr(4;,2;) = ({4iz;) — (4:)(z;))/((47)(z7))"/* for 4, and
71,722,273, taken from a LES+KS simulation with setup I and initial separation 4, = 5. They are
approximately zero for all times and thus support Sawford’s assumption of statistical independence
of 4 and z.

of the centre-of-mass p.d.f., p.(z). We also tested this assumption in our simulations
and in figure 13 it is shown that no significant deviation from Gaussianity can be
observed, neither in the inertial range nor for very long times.

The separation p.d.f.

In figure 14(a) we show the separation p.d.f. (2.18) as a function of the separation
A" = A for different times, in the inertial time range t/(u?,,/e) = 0.1,1 and for
the large time t/(u?,,/€) = 10. It is seen that in the inertial time range the p.d.f. is
non-Gaussian and roughly constant, and approaching Gaussian behaviour for large
times. This is in agreement with Thomson (1990), and we include his numerical
results, taken from his figure 1 for comparison. We stress that the good agreement
with Thomson’s data concerns the (non-Gaussian) shape of the separation p.d.f. only.
The absolute values of separation are higher in Thomson’s stochastic model due to
his higher value of G,; in other words, the non-Gaussianity is more pronounced in
the kinematic model if the separation vector is not normalized.

Figures 14(b) and 14(c) depict the p.d.f.s of the separation vector where averaging
was performed over one and two space directions, respectively, (2.19). As seen above,
the shape of the particle separation p.d.f.s is of crucial importance when relating
particle statistics to the concentration field. We presented here numerical results of
these p.d.f.s from simulations where the kinematic flow field has been coupled with
LES. However, because the inertial-range behaviour is dominated by the kinematic
subgrid field the statistics presented in this section could in principle be obtained
by kinematic simulations alone, in which case the Lagrangian integral scale T, and
the dissipation rate e would not be prescribed by the LES but would be ‘free’
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FIGURE 12. The separation p.d.f. p, conditional on different absolute values of the centre of mass z,
shown here for a time within the inertial range, t/(u?,,/€) = 0.1, and normalized by the mean-square
separation. The conditional p.d.f. is computed by averaging over bands in z of band-width z,,,/10.
This is a stringent test of Sawford’s independence assumption and it is found that p, is indeed
independent of values of the centre of mass.

input parameters for the model flow. Indeed, the normalized p.d.f.s obtained from
kinematic simulations alone (shown in figure 10b) have the same shape as for large-
eddy simulations with the kinematic model included. However, it is important to note
that the coupling of the KS subgrid field with the LES simulation removes the free
choice of the integral scale and dissipation rate.

Concentration variances

To compute the scalar mean and scalar variance fields one needs to compute the
particle and particle separation p.d.f.s, as well as the variances oy, ¢,, see (2.13) and
(2.14). We also compute the variance of the particle separation, ¢, which is given by
63 = (%)(Az(t)), to properly rescale the particle separation p.d.f. in (2.14).

The growth of the variances oy, 0., 04 in time is shown in figure 15. As expected,
o ~ t'; 0. = 20, during the inertial range of times, and o, ~ t'/?; 0.,0, — 2?0,
for very large times. This behaviour agrees well with the predictions from stochastic
modelling, see figure 3 in Thomson (1990) (note that his definition of particle pairs is
slightly different from ours). As a practical example of using these particle statistics
to determine the concentration variance field we compare in figure 16 our simulations
with the experiments of Fackrell & Robins (1982) who measured the concentration
variance behind a continuous elevated point source far from the boundary in boundary
layer turbulence. In the same figure we included the numerical results of the stochastic
model of Thomson (1990). To compute the scalar variance we follow Thomson (1990)
who approximated the experimental configuration by an instantaneous line source.
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pairs for a LES+KS simulation. They are Gaussian for all times which gives support to Sawford’s
approximations.

The concentration variance is defined by
oo = (0%) — (0)~. (4.7)

Using (2.13) and (2.14) and taking into account the isotropy of p,, we can write

(2m(o2 + 0'2))2 o0 172
%6 = ;20/ P4(4)Gy(4,00)AdA — 1 ) (4.8)
o+ o0p 0
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Scalar subgrid model with flow structure 345

Numerically integrating (4.8) for selected times and selected point source sizes we
find the results presented in figure 16.

As seen in figure 16, there is some scatter in the experimental data from Fackrell
& Robins. There are additional uncertainties which arise from approximating the
continuous point source by an instantaneous line source. Moreover, the description of
the experimental source with a given nozzle diameter d as a Gaussian with variance
oo may be problematic. Indeed, in another study based on a similar stochastic model
(Borgas & Sawford 1996) ¢, was chosen to be slightly smaller than the nozzle
diameter. Here we use a gy which equals the nozzle diameter as in Thomson (1990).
In view of all these uncertainties, the agreement between experiments and both the
kinematic subgrid model and the stochastic model is good and within the scatter of
the experimental data.

The difference, however, is that Thomson (1990) needs to pick ‘arbitrarily’ a value
for the Lagrangian constant C, which we need not. He chooses Cy = 4 which he
motivates by referring to experiments. In fact, Sawford (1991) attributed variations
in Cy to Reynolds number effects in laboratory dispersion. Borgas & Sawford (1996)
state that “Cy is not known with any certainty” and they in fact suggest using higher
values for Cy (Cy =~ 6 or bigger) when they compare their numerical results with
another set of experiments. They also demonstrate that a higher value of Cy leads
to an increase of the maximum scalar variance and the quantitative differences are
significant. It is therefore advantageous to have a model that does not require an
input value for C,.

Effectively, Cy contributes in determining the Lagrangian integral time scale which
is an input parameter for the stochastic model. In the KS subgrid model the integral
time scale is given by construction, in fact by the velocity LES, and the results that
we present here are therefore free of any highly uncertain parameters. Indeed, if we
estimate Cy in our simulations by Cy = 2u?, . /(TLe) (Pope 1994), it is found from the
LES that Cy = 3.9, in agreement with the expectation from experiments.

Finally, we remark that another important difference between stochastic models
and kinematic flow fields is their incompressibility in an Eulerian frame. A KS field
is incompressible by construction whereas enforcing incompressibility for a stochastic
model is highly non-trivial (Thomson 1990; Pedrizzetti & Novikov 1994).

5. Conclusions and discussion
5.1. Achievements

In this work a new approach to subgrid modelling of passive scalar fields has been
proposed. Our modelling approach is based on random kinematic velocity fields
(KS) that we use as an approximation of the unknown subgrid velocity field. We
couple KS to LES velocity fields by using the mean dissipation rate of the flow. The
KS subgrid model fulfils our basic requirements for a model for simulating scalar
variances that we set out in the introduction: it obeys Kolmogorov’s inertial-range
scaling, is incompressible and contains the vortical, straining and streaming regions

FiGURE 14. P.d.fs of one separation vector component A,, normalized with the mean-square
separation o, for a LES+KS simulation: (a) p4, (b) D4, (¢) py. See (2.18) and (2.19) for the
definitions of py, p4, p4. For large time the p.d.f:s tend towards a Gaussian. Also included are data
from Thomson (1990), see his figure 1, t/(c/€) = 0.2 where ¢ = tyy.
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FIGURE 16. Concentration variance at the centre of a line source. Comparison with Thomson’s
stochastic model and experimental data from Fackrell & Robins (1982).

that exist in the small scales of turbulence. We now summarize our achievements as

follows:

1. It was demonstrated that the model is able to reproduce Richardson’s t3-scaling
for particle-pair dispersion over a wide range of scales and we found G, = 0.07.
2. For the first time, the p.d.f.s of the particle separation vector have been measured
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in a LES with inertial-range effects explicitly resolved (and determined by the KS
subgrid model). We find that the separation p.d.f. is highly non-Gaussian and becomes
Gaussian for very long times. This is in agreement with Thomson’s (1990) stochastic
model. His model leads however to much higher absolute values of two-particle
dispersion due to the random nature of the particle trajectories in his model.

3. We compute the scalar variance and base our computation on Sawford’s (1983)
assumptions. We validate his assumptions numerically and find (i) that the p.d.f. of
single particles and the p.d.f. of the centre of mass of particle pairs are Gaussian
for all times, and (ii) that the centre of mass and the particle-pair separation are
statistically uncorrelated for all times.

4. Computing the variance field for an instantaneous line source where we can
compare our results to experiments we find good agreement with the experiments
of Fackrell & Robins (1982). Stochastic models can achieve equally good agreement
provided the model parameter C, is chosen correctly. In our approach we do not
require an input value for C.

5.2. Possibilities for future improvement and development

The kinematic modelling approach appears most natural for spectral LES because
we could readily define a matching procedure at the cutoff wavenumber k.. However,
a LES defined in real space (with Smagorinsky’s model, for example) could be
equally coupled to the subgrid velocity field if an additional transport equation is
solved for the turbulent kinetic energy. In fact, the dissipation rate is a strongly
fluctuating quantity in real space and the coupling of sub- and supergrid fields by the
mean dissipation rate neglects possible effects of the local variation of dissipation.
However, while we couple sub- and supergrid fields via the mean dissipation rate, the
modelled subgrid field itself contains eddying and straining structures which imply
local variations of the dissipation rate. We therefore neglect possible correlations
of such structures with the turbulent large scales. By definition, the spectral eddy
viscosity (1.11) also neglects local variations of the dissipation rate (see, for example,
Lesieur & Métais 1996 for a discussion on this). It would be interesting to investigate
the effect of local variation of dissipation in a LES defined in configuration space.

In §4.3 we compared our model with the eddy-diffusivity particle subgrid models
that have been used in previous studies and emphasized the advantage of our model
in terms of two-particle statistics. Such Brownian walk models could, in fact, be made
more appropriate for two-particle statistics in the same way that Durbin (1980) and
Thomson (1990) developed their stochastic models with the view to model the effect of
inertial-range scaling on two-particle statistics. To our knowledge, such sophisticated
stochastic models have not been used in a LES framework to date.

The accuracy of the Lagrangian integral scales is determined by the accuracy of
the LES, boundary conditions and forcing schemes. It is beyond the scope of this
study to investigate such effects but it is an important observation when discussing
the applicability and accuracy of the kinematic subgrid model. Future work will also
have to extend the ideas presented here towards more complex flows that include
anisotropies and solid boundaries.
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